Реферат история компьютерной графики. Понятие компьютерной графики. Основные этапы развития История развития компьютерной графики игры
  • Реферат история компьютерной графики. Понятие компьютерной графики. Основные этапы развития История развития компьютерной графики игры

    Первые вычислительные машины не имели отдельных средств для работы с графикой, однако уже использовались для получения и обработки изображений. Программируя память первых электронных машин, построенную на основе матрицы ламп, можно было получать узоры.

    В 1961 году программист С. Рассел возглавил проект по созданию первой компьютерной игры с графикой. Создание игры ("Spacewar!") заняло около 200 человеко-часов. Игра была создана на машине PDP-1.

    В 1963 году американский учёный Айвен Сазерленд создал программно-аппаратный комплекс Sketchpad, который позволял рисовать точки, линии и окружности на трубке цифровым пером. Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор, реализованный на компьютере. Также программу можно назвать первым графическим интерфейсом, причём она являлась таковой ещё до появления самого термина.

    В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.

    В 1964 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм "Кошечка", который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.

    В 1968 году существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.

    В конце 60-х - начале 70-х в области компьютерной графики начали работать новые фирмы. Если ранее для выполнения каких-либо работ покупателям приходилось устанавливать уникальное оборудование и разрабатывать новое программное обеспечение, то с появлением разнообразных пакетов программ, облегчающих процесс создания изображений, чертежей и интерфейсов, ситуация существенно изменилась.

    За десятилетие системы стали настолько совершенны, что почти полностью изолировали пользователя от проблем, связанных с программным обеспечением.

    В конце 70-х в компьютерной графике произошли значительные изменения. Появилась возможность создания растровых дисплеев, имеющих множество преимуществ: вывод больших массивов данных, устойчивое, не мерцающее изображение, работа с цветом. Впервые стало возможным получение цветовой гаммы. Растровая технология в конце 70-х стала явно доминирующей. Наиболее знаменательным событием в области компьютерной графики стало создание конце 70-х персонального компьютера. В 1977 году компания Apple создала Apple-II. Появление этого устройства вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако персональные компьютеры стимулировали процесс разработки периферийных устройств. Конечно, персональные компьютеры развивались как важная часть машинной графики, особенно с появлением в 1984 году модели Apple Macintosh с их графическим интерфейсом пользователя.

    Первоначально областью применения персонального компьютера были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области CAD/CAM, так и в более общих областях бизнеса и искусства. К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательств. В конце 80-х возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid, которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразовывая его в стандартные форматы.

    Однако акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных изображений.

    В 90-х стираются отличия между компьютерной графикой и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией.

    Кроме того, появляется возможность работы с видео. Прибавьте аудио возможности, и вы получите компьютерную среду мультимедиа. Возрастающий потенциал персональных компьютеров и их громадное число - порядка 100 миллионов - обеспечивает устойчивый рост индустрии в отрасли. Графика все шире проникает в бизнес - сегодня фактически нет документов, созданных без использования какого-либо графического элемента.

    Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям - и того меньше. Андриесван Дам считается одним из отцов компьютерной графики, а его книги - фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.

    До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

    Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

    Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса - средства общения между человеком и машиной, - обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «Whatyouseeiswhatyouget» - «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

    Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

    Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

    • - произвольное сканирование луча;
    • - растровое сканирование луча;
    • - запоминающие трубки;
    • - плазменная панель;
    • - жидкокристаллические индикаторы;
    • - электролюминисцентные индикаторы;
    • - дисплеи с эмиссией полем.

    Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюменпо-видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind-I (Ураган-I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».

    При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения - менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

    Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000-4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

    Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2-4). Были разработаны, но не нашли широкого применения двух-трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

    В векторных дисплеях легко стереть любой элемент изображения - достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

    Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием - координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора любой части требуемого элемента.

    Первые серийные векторные дисплеи за рубежом появились в конце 60-х годов.

    Растровое сканирование луча.

    Прогресс в технологии микроэлектроники привел к тому, с середины 70-х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

    Запоминающие трубки.

    В конце 60-х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше - до 4096 точек.

    Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

    Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

    Плазменная панель.

    В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

    Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

    Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

    Дисплеи с эмиссией полем. Дисплеи на электронно-лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

    Таким образом, стартовав в 1950г., компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.

    История компьютерной графики в СССР началась практически одновременно с её рождением в США. В эту подборку вошли некоторые факты из этой истории. Мы надеемся, что подборка будет расширяться и дополняться.

    Мы будем очень признательны за любые исторические факты о компьютерной графике и зрении в России и с большим удовольствием впишем их в летопись. Присылайте информацию на наш адрес [email protected]сайт

    1964

    Первая компьютерная визуализация

    В Институте прикладной математики, г. Москва, Ю.М. Баяковским и Т.А. Сушкевич продемонстрирован первый опыт практического применения машинной графики при выводе на характрон последовательности кадров, образующих короткий фильм с визуализацией обтекания цилиндра плазмой.


    1968

    Первый отечественный растровый дисплей

    В ВЦ АН СССР, на машине БЭСМ-6 установлен первый отечественный растровый дисплей, с видеопамятью на магнитном барабане весом 400 кг.

    Первая дипломная работа по машинной графике в Московском университете
    Фолкер Хаймер. Транслятор и интерпретатор для программного языка L^6.
    Рассматривается реализация языка L^6, предложенного Кеннетом Ноултоном для решения некоторых задач анимации.
    Первый в мире мультфильм, нарисованный компьютером.

    Сделан из последовательности распечаток, выполненных на перфоленте с помощью машины БЭСМ-4. Этот мультфильм в своё время был большим прорывом в области компьютерного моделирования, ибо картинка не просто нарисована, а получена решением уравнений, задающих движение кошки.

    1970

    Выпущен первый обзор по машинной графике, представленный затем как доклад на Вторую Всесоюзную конференцию по программированию (ВКП-2).
    Штаркман В.С., Баяковский Ю.М. Машинная графика . Препринт ИПМ АН СССР, 1970.
    По-видимому, это первая публикация на русском языке, в которой появилось словосочетание машинная графика.

    1971

    Первые кинофильмы с использованием компьютера
    В ИПМ для машины SDS-910 был разработан набор подпрограмм, позволяющих снимать кинофильмы, установлена камера для покадровой фиксации изображений, выводимых на экран дисплея. С помощью этой системы осуществлялась визуализация поведения шагающего робота, а также моделирование гравитационного взаимодействия галактик.


    1972

    Первая библиотека графических программ Графор
    Первая версия библиотеки позволяла выводить на графопостроитель, а затем и на дисплей, графические примитивы (отрезок прямой, дуга окружности, алфавитно-цифровые символы) и на их базе строить графики функций. В дальнейшем библиотека пополнилась программами аффинных преобразований, штриховки, экранирования, аппроксимации и сплайн-интерполяции, программами визуализации двумерных функций (поверхности и карты изолиний), программами геометрических построений. Графор был реализован на большинстве существующих в то время в Советском Союзе ЭВМ и операционных систем с выводом практически на все имеющиеся графопостроители и графические дисплеи. Этап создания классической графической библиотеки на Фортране завершился в 1985 г. изданием книги Графор. Графическое расширение Фортрана (авторы - Ю.М.Баяковский, Т.Н.Михайлова, В.А.Галактионов; тираж - 40 тыс. экз.).

    Защищена первая диссертация в СССР по машинной графике
    Список нескольких диссертаций приводится ниже:

    • Карлов Александр Андреевич
      Вопросы математического обеспечения дисплея со световым карандашом и его использование в задачах экспериментальной физики
      Дубна, 1972
    • Грин Виктор Михайлович
      Программное обеспечение для работы с трехмерными объектами на графических терминалах
      Новосибирск, 1973
    • Баяковский Юрий Матвеевич
      Анализ методов разработки графического обеспечения ЭВМ
      Москва, 1974
    • Злотник Евгений Матвеевич
      Разработка и исследование комплекса технических средств и методики проектирования оперативной графической системы
      Минск, 1974
    • Лысый Семен Тимофеевич
      G1 - Геометрическая система программного обеспечения ЭВМ
      Кишинев, 1976
    • Пигузов Сергей Юрьевич
      Разработка и исследование средств графического взаимодействия геофизика с ЭВМ при обработке данных сейсморазведки
      Москва, 1976

    1976

    На русском языке издана книга У.Ньюмена, Р.Спрулла Основы интерактивной машинной графики (под редакцией В.А.Львова).

    1977

    Первая встреча графиков

    В сентябре 1977 года в Новосибирске состоялась первая встреча графиков. Событие было заявлено как "региональная конференция", но собралось достаточно представительное сообщество, получилась Всесоюзная. Часть докладов была отобрана для публикации в журнале Автометрия, что и произошло в 1978 году.

    1979

    Первая всесоюзная конференция по машинной графике прошла в Новосибирске в сентябре.

    Список следующих конференций:


    • Новосибирск, 1981 г. (
    • Всесоюзная конференция по проблемам машинной графики
      и цифровой обработки изображений
      Владивосток, 24-26 сентября 1985 г.
    • IV Всесоюзная конференция по машинной графике
      Протвино, 9-11 сентября 1987 г.
    • V Всесоюзная конференция по машинной графике "Машинная графика 89"
      Новосибирск, 31 октября-2 ноября 1989 г.

    Первый полутоновой цветной растровый дисплей Гамма-1.

    Первую пригодную к активному использованию в кино и телевидении дисплейную станцию “Гамма” создали в Институте прикладной физики в новосибирском академгородке Владимир Сизых, Петр Вельтмандер, Алексей Бучнев, Владимир Минаев и др. Разрешение первой станции было 256×256×6 бит, и затем непрерывно увеличивалось. Дисплейная станция Гамма 7.1 обеспечивала разрешение 1024*768 для прогрессивной развертки монитора 50Гц и имела объём видеопамяти 1Мб. Во второй половине 1980-х гг. “Гамма”, выпускавшаяся серийно, поставлялась и успешно эксплуатировалась государственными телецентрами страны.

    1981 год

    Выход графического пакета Атом.

    Разработка пакета была инициирована Ю.М.Баяковским. За основу была взята пропагандируемая им тогда Core System (Каминский, Клименко, Кочин).

    1983

    Первый спецкурс по машинной графике.

    Ю.М. Баяковский начал читать годовой спецкурс по машинной графике для студентов факультета Вычислительной математики и кибернетики Московского государственного университета. С 1990 г. курс читается как обязательный для студентов второго года обучения.

    1985 год

    Первый доклад принят на Eurographics 1985

    "Пробили окно в графическую Европу" - первый доклад из СССР принят на конференцию Eurographics 1985. Однако, поскольку Перестройка ещё не началась, то докладчикам не разрешили выехать из СССР, и первый раз советская делегация посетила конференцию только в 1988 году.

    1986 год

    Пакет Атом-85 выходит в ЦЕРН.

    Графический пакет Атом-85 выпущен в ЦЕРН, где активно использовался (наравне с Графором) для задач иллюстративной графики (Клименко, Кочин, Самарин).

    1990

    Организована первая российская компания компьютерной графики «Драйв». Конференция SciVis

    В 1989 году, Александр Пекарь, Сергей Тимофеев и Владимир Соколов организовали студию компьютерной графики на ВПТО “Видеофильм”, которая спустя год стала первой самостоятельной компанией компьютерной графики, переместившись из-под крыла “Видеофильма” в Центральный павильон ВДНХ.

    Также в 1990 году прошла первая конференция по SciVis, куда меня пригласил Грег Нильсон (пока без доклада), но уже в следующем году 1991 на 1-м Семинаре из серии SciVis-Dagstuhl нами был представлен доклад о визуализации в Физике высоких энергий.

    1991

    В феврале в Москве прошла первая международная конференция по компьютерной графике и зрению ГрафиКон"91
    Первая конференции ГрафиКон была организована Академией наук СССР в лице Института прикладной математики имени М.В. Келдыша АН СССР, Союзом Архитекторов СССР и некоторыми другими организациями при содействии и поддержке международной ассоциации ACM Siggraph (США). Среди американских гостей были руководители компаний мировой величины, уже вошедшие в историю компьютерной графики, как например, Эд Кэтмулл , президент компании "Pixar" , сделавший с Джорджем Лукасом Звездные войны. Свои доклады (переведенные и изданные организаторами конференции на русском языке) представили также Джон Ласситер из "Pixar", который накануне (в 1989 г.) получил первый в истории Оскар на компьютерную анимацию (фильм "Tin Toy", показанный на конференции), а также легендарный Джим Кларк , создатель компании "Silicon Graphics" долгие годы бывшей законодателем мод в области профессиональных графических станций.
    Первым российским лауреатом на международном конкурсе PRIX ARS ELECTRONICA в номинации Computer Animation стал коллектив из Новосибирска.


    <<Фильм Тень был сделан рабочей группой (Борис Мазурок, Сергей Михаев, Александр Черепанов ) под моим руководством на специализированной трехмерной системе визуализации Альбатрос , основное назначение которой обучение космонавтов и летчиков. Система Альбатрос была разработана в Институте автоматики и электрометрии Сибирского отделения Академии наук СССР.>> Борис Долговесов.

    << ... Moving on to more conventional 3D animation there was "Shadow" from the USSR (commended). Although done on a pretty unsophisticated system, this showed what a bit of humour and good observation of human movement is capable of.>> A.J.Mitchell, The birth of a new art .

    Цитируется книга DER PRIX ARS ELECTRONICA. International Compendium of the Computer Arts. Hannes Leopoldseder . - Linz - VERITAS-Verlag, 1991.

    1993

    Проведен первый фестиваль компьютерной графики и анимации АНИГРАФ"93.

    В 1992 году Владимиром Лошкарёвым, руководителем фирмы “Joy Company”, занимающейся продвижением на российский рынок пакетов графических программ и оборудования, была организована первая научно-практическая конференция по компьютерной графике. Тогда и пришла идея фестиваля, сочетающего в себе и техническую сторону, и коммерцию, и чистое творчество. Фестиваля АНИГРАФ был организован при участии ВГИКа, сопредседателем оргкомитета стал Сергей Лазарук (проректор по научной и творческой работе ВГИКа). На выставке были представлены все крупнейшие производители графических станций. На творческом конкурсе было представлено более 50 работ.

    К сожалению, до десятилетнего юбилея фестиваль не дожил, и был закрыт как коммерчески несостоятельный.

    Первый Российский мультфильм с трёхмерной компьютерной графикой.

    Новосибирская студия "Альбатрос" создала первый отечественный мультфильм с трёхмерной компьютерной графикой "Миша - первое плавание" , который в 1993 году был в прокате на Российском ТВ,

    1994

    Первая компьютерная графика в отечественном кино.

    В фильме "Утомленные солнцем" эпизод с шаровой молнией был подготовлен компанией “Render Club”.

    1996

    Первые попытки собрать и систематизировать исторические факты.
    Timour Paltashev . Russia: Computer Graphics -- Between the Past and the Future . Computer Graphics, vol.30, No. 2, May 1996. Special issue: Computer Graphics Around the World .
    Yuri Bayakovsky . Russia: Computer Graphics Education Takes Off in the 1990"s . Computer Graphics, Vol. 30, No. 3, August 1996. Special issue: Computer Graphics Education -- Worldwide Effort

    2000 год

    Спецвыпуск журнала Computer&Graphics Vol.24 "Computer Graphics in Russia."

    2001 год

    Появление виртуальной реальности в России.

    В Протвино прошла первая конференция из серии VEonPC с демонстрацией созданной группой Станислава Клименко в кооперации с Мартином Гебелем (ИМК, С.Августин) первой в России установки виртуальной реальности.

    2003

    Первая конференция разработчиков компьютерных игр КРИ-2003.
    21 и 22 марта 2003 года в Московском Государственном Университете состоялась первая международная Конференция Разработчиков компьютерных Игр (КРИ) в России, организованная DEV.DTF.RU - ведущим специализированным ресурсом в Рунете для игровых разработчиков и издателей. КРИ 2003 впервые в истории российской игровой индустрии собрала для обмена опытом и обсуждения самых различных проблем практически всех профессионалов отрасли. В КРИ 2003 приняло участие около 40 компаний из России, а также ближнего и дальнего зарубежья, действующих как в сфере разработки, так и издания игрового ПО, а общее число посетителей конференции, по различным оценкам, составило от 1000 до 1500 человек.

    2006

    Первая практическая конференция по компьютерной графике и анимации CG Event -2006.

    Вдохновленные конференцией SIGGRAPH, автором книги "Понимая Maya" Сергей Цыпцын и создателем сайта cgtalk.ru Александр Костин была организована первая практическая конференция по компьютерной графике CG Event, ставшая идейной наследницей фестиваля АНИГРАФ. В первой же CG Event участвовало более 500 человек, и в последующем количество участников только росло.

    Ссылки:

    1. Энциклопедия отечественного кино. http://www.russiancinema.ru/template.php?dept_id=3&e_dept_id=5&e_chr_id=416&e_chrdept_id=2&chr_year=1993
    2. «Бюджетный 3D». Компьютерра. http://www.computerra.ru/video/287273/
    3. Первые шаги цифрового телевидения в СССР

    На сегодняшний день нет ни одной области в деятельности человека, где бы не применялась компьютерная графика.

    Практически ни один фильм не обходится без нее, не говоря уже о рекламе, издательском деле, анимации и видеоиграх. Число виртуальных галерей и развлекательных парков быстро растет. А с приходом автоматических пилотируемых аппаратов компьютерная графика стала использоваться даже в космической отрасли.

    Основные этапы в истории развития

    "Классическая" векторная графика до сих пор используется в различных приложениях бизнеса, включая разработку концепции, тестирование и создание новых продуктов. Можно считать, что первые системы компьютерной графики появились вместе с первыми цифровыми компьютерами.

    Сейчас ее рассматривают как средство, обеспечивающее мощную взаимосвязь между человеком и компьютером, заставляя компьютер говорить с человеком на языке изображений.

    Прошло несколько лет, и компьютерная графика стала основным средством связи между человеком и компьютером, постоянно расширяющим сферы своего применения. Проект "Вихрь" Массачусетского технологического института был отмечен как начало эры компьютерной графики. "Вихрь" стал основой создания опытного образца командноуправляемой системы воздушной защиты, разработанной как средство преобразования данных, полученных от радара, в наглядную форму.

    В конце 60-х - начале 70-х в области компьютерной графики начали работать новые фирмы. Если ранее для выполнения каких-либо работ покупателям приходилось устанавливать уникальное оборудование и разрабатывать новое программное обеспечение, то с появлением разнообразных пакетов программ, облегчающих процесс создания изображений, чертежей и интерфейсов, ситуация существенно изменилась. За десятилетие системы стали настолько совершенны, что почти полностью изолировали пользователя от проблем, связанных с программным обеспечением.

    В конце 70-х в компьютерной графике произошли значительные изменения. Появилась возможность создания растровых дисплеев, имеющих множество преимуществ: вывод больших массивов данных, устойчивое, не мерцающее изображение, работа с цветом. Впервые стало возможным получение цветовой гаммы. Растровая технология в конце 70-х стала явно доминирующей. Наиболее знаменательным событием в области компьютерной графики стало создание конце 70-х персонального компьютера.

    В 1977 году компания Apple создала Apple-II . Появление этого устройства вызывало смешанные чувства: графика была ужасной, а процессоры медленными. Однако персональные компьютеры стимулировали процесс разработки периферийных устройств. Конечно, персональные компьютеры развивались как важная часть машинной графики, особенно с появлением в 1984 году модели Apple Macintosh с их графическим интерфейсом пользователя. Первоначально областью применения персонального компьютера были не графические приложения, а работа с текстовыми процессорами и электронными таблицами, но его возможности как графического устройства побуждали к разработке относительно недорогих программ как в области CAD/CAM , так и в более общих областях бизнеса и искусства.

    К концу 80-х программное обеспечение имелось для всех сфер применения: от комплексов управления до настольных издательств. В конце 80-х возникло новое направление рынка на развитие аппаратных и программных систем сканирования, автоматической оцифровки. Оригинальный толчок в таких системах должна была создать магическая машина Ozalid , которая бы сканировала и автоматически векторизовала чертеж на бумаге, преобразовывая его в стандартные форматы.

    Однако акцент сдвинулся в сторону обработки, хранения и передачи сканируемых пиксельных изображений.

    В 90-х стираются отличия между компьютерной графикой и обработкой изображения. Машинная графика часто имеет дело с векторными данными, а основой для обработки изображений является пиксельная информация. Еще несколько лет назад каждый пользователь требовал рабочую станцию с уникальной архитектурой, а сейчас процессоры рабочих станций имеют быстродействие, достаточное для того, чтобы управлять как векторной, так и растровой информацией.

    Кроме того, появляется возможность работы с видео. Прибавьте аудио возможности, и вы получите компьютерную среду мультимедиа. Возрастающий потенциал персональных компьютеров и их громадное число - порядка 100 миллионов - обеспечивает устойчивый рост индустрии в отрасли. Графика все шире проникает в бизнес - сегодня фактически нет документов, созданных без использования какого-либо графического элемента.

    Художники, архитекторы и дизайнеры уже не мыслят своей работы без использования компьютерной графики. Трехмерная графика позволяет смоделировать архитектурный объект и позволяет оценить его достоинства более объективно, чем это возможно сделать на основе чертежей или макетов. Дизайнер по интерьерам сейчас может предложить заказчику почти фотографическое изображение его будущего жилья, тогда как раньше, возможно было довольствоваться только эскизами.


    Коротко векторных изображениях

    Особенно часто в повседневной жизни мы сталкиваемся с векторными изображениями . Почти на любом изделии есть логотип компании-изготовителя. Разрабатывается логотип в векторах. Но нельзя и переоценивать возможности компьютера. Ведь это всего лишь инструмент, каким бы совершенным он ни был. Компьютер лишь облегчает работу человека с графическими изображениями, но не создает их. Сначала можно было создавать лишь простые векторные объекты - изображения, состоящие из, так называемых, «векторов» - функций, которые позволяют вычислить положение точки на экране или бумаге. Например, функция, графиком которой является круг, прямая линия или другие более сложные кривые.

    С развитием компьютерной техники и технологий появилось множество способов выполнения графических изображений. Примерно в 1995 году в России появились свои разработчики мультимедиа программ, зародились электронные издательства. Качественный уровень программных продуктов, выполненных российскими художниками и программистами не уступал, а иногда и превосходил качество программ зарубежных авторов. Ещё одним направлением современной компьютерной графики стал «Веб-Дизайн». С 1995 года во всём мире наблюдается развёртывание глобальной мировой компьютерной сети - Интернет.

    Интернет является самым большим в мире хранилищем информации и связывает сегодня почти 80% всех компьютерных систем мира. И сегодня Интернет стал новым направлением для компьютерных художников-дизайнеров. По своему жанру он очень близок к книжной и журнальной графике. Однако, художественная графика, предназначенная для Интернет, должна быть лаконична. Это связано, прежде всего, с ограничениями в скорости передачи данных по телефонным и кабельным сетям, через которые осуществляется связь между компьютерами. Однако этого вполне достаточно для того, чтобы осуществлять передачу видеоданных.

    Введение

    История развития информационных технологий характеризуется быстрым изменением концептуальных представлений, технических средств, методов и сфер их применения. В современных реалиях весьма актуальным для большинства людей стало умение пользоваться промышленными информационными технологиями. Проникновение компьютеров во все сферы жизни общества убеждает в том, что культура общения с компьютером становится общей культурой человека.

    Цель работы - изучить историю возникновения компьютерной графики.

    Объектом изучения является компьютерная графика.

    Предмет изучения: история возникновения компьютерной графики.

    Задачи курсовой работы:

    1) изучить и провести анализ литературы по данной теме;

    2) дать понятие основным видам компьютерной графики;

    3) рассмотреть возможности компьютерной графики.

    История развития компьютерной графики

    Возникновение компьютерной (машинной) графики

    Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям - и того меньше. Андриесван Дам считается одним из отцов компьютерной графики, а его книги - фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.

    До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.

    Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость / производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие.

    Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса - средства общения между человеком и машиной, - обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «Whatyouseeiswhatyouget» - «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.

    Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.

    Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:

    Произвольное сканирование луча;

    Растровое сканирование луча;

    Запоминающие трубки;

    Плазменная панель;

    Жидкокристаллические индикаторы;

    Электролюминисцентные индикаторы;

    Дисплеи с эмиссией полем.

    Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюменпо-видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind-I (Ураган-I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».

    При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения - менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.

    Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000-4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.

    Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2-4). Были разработаны, но не нашли широкого применения двух-трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.

    В векторных дисплеях легко стереть любой элемент изображения - достаточно при очередном цикле построения удалить стираемый элемент из дисплейного файла.

    Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием - координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора любой части требуемого элемента.

    Первые серийные векторные дисплеи за рубежом появились в конце 60-х годов.

    Растровое сканирование луча.

    Прогресс в технологии микроэлектроники привел к тому, с середины 70-х годов подавляющее распространение получили дисплеи с растровым сканированием луча.

    Запоминающие трубки.

    В конце 60-х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше - до 4096 точек.

    Текстовый диалог поддерживается с помощью алфавитно-цифровой клавиатуры, косвенный графический диалог осуществляется перемещением перекрестия по экрану обычно с помощью координатных колес.

    Появление таких дисплеев с одной стороны способствовало широкому распространению компьютерной графики, с другой стороны представляло собой определенный регресс, так как распространялась сравнительно низкокачественная и низкоскоростная, не слишком интерактивная графика.

    Плазменная панель.

    В 1966г. была изобретена плазменная панель, которую упрощенно можно представить как матрицу из маленьких разноцветных неоновых лампочек, каждая из которых включается независимо и может светиться с регулируемой яркостью. Ясно, что системы отклонения не нужно, не обязательна также и память регенерации, так как по напряжению на лампочке можно всегда определить горит она ли нет, т.е. есть или нет изображение в данной точке. В определенном смысле эти дисплеи объединяют в себе многие полезные свойства векторных и растровых устройств. К недостаткам следует отнести большую стоимость, недостаточно высокое разрешение и большое напряжение питания. В целом эти дисплеи не нашли широкого распространения.

    Жидкокристаллические индикаторы. Дисплеи на жидкокристаллических индикаторах работают аналогично индикаторам в электронных часах, но, конечно, изображение состоит не из нескольких сегментов, а из большого числа отдельно управляемых точек. Эти дисплеи имеют наименьшие габариты и энергопотребление, поэтому широко используются в портативных компьютерах несмотря на меньшее разрешение, меньшую контрастность и заметно большую цену, чем для растровых дисплеев на ЭЛТ.

    Электролюминисцентные индикаторы. Наиболее высокие яркость, контрастность, рабочий температурный диапазон и прочность имеют дисплеи на электролюминисцентных индикаторах. Благодаря достижениям в технологии они стали доступны для применения не только в дорогих высококлассных системах, но и в общепромышленных системах. Работа таких дисплеев основана на свечении люминофора под воздействием относительно высокого переменного напряжения, прикладываемого к взаимноперпендикулярным наборам электродов, между которыми находится люминофор.

    Дисплеи с эмиссией полем. Дисплеи на электронно-лучевых трубках, несмотря на их относительную дешевизну и широкое распространение, механически непрочны, требуют высокого напряжения питания, потребляют большую мощность, имеют большие габариты и ограниченный срок службы, связанный с потерей эмиссии катодами. Одним из методов устранения указанных недостатков, является создание плоских дисплеев с эмиссией полем с холодных катодов в виде сильно заостренных микроигл.

    Таким образом, стартовав в 1950г., компьютерная графика к настоящему времени прошла путь от экзотических экспериментов до одного из важнейших, всепроникающих инструментов современной цивилизации, начиная от научных исследований, автоматизации проектирования и изготовления, бизнеса, медицины, экологии, средств массовой информации, досуга и кончая бытовым оборудованием.